If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7g^2+g-8=0
a = 7; b = 1; c = -8;
Δ = b2-4ac
Δ = 12-4·7·(-8)
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-15}{2*7}=\frac{-16}{14} =-1+1/7 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+15}{2*7}=\frac{14}{14} =1 $
| 5s+20=100 | | 3(j−16)=3 | | 39+y=46 | | 5x-14+x+26=180 | | 6y+28=-2(y-2) | | 3x+12+4x=40 | | x+5.9=-1.7$. | | X/2+x/2+2x=180 | | -24r+42=181 | | 10x-50=9x=45 | | 7+9c=34 | | 5x-3+30=8x+6 | | 96=8(p+4) | | 3x+11=5x-15=180 | | 40=10(x-5) | | 21=3(r-76) | | 9+4(x+1)=25* | | -3(t-4)=18 | | 6(2x-2)-2(4x+6)=4 | | b+19=21 | | 11=a+12 | | 6x-2(x-5)=-5 | | 8x-15+7x-5=180 | | m+25/8=4 | | (2x+6)/5=8 | | x+2(12)=40 | | m-52/8=3 | | -115=5(1-4v) | | 2(5x+9)=-42+50 | | 3(4+4x)=2x+8 | | 12x-9=23-4x | | 2x+1=0x+1 |